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Naturally acidic freshwaters are found worldwide, yet the fishes of these
habitatg have been infrequently studied. Systems that formed during the Holocene
tend to be depauperate of fishes, yet older, tropical acidic waters are among the
most diverse fish habitats. Occupants of naturally acidic waters come from a diverse
array of piscine taxa, but geographic location appears to be more important than
taxon in driving final fish assemblage structure. Based on studies from relatively
rapid exposure, environmental acid is predicted to challenge physiological regula-
tion of many systems across multiple life-history stages of fish. The study of how
fish deal with acidity in nature began almost a century ago, and flourished in the last
third of the twentieth century as concerns over anthropogenic acidification of



the freshwater components of these systems can be depauperate of fish fauna
compared to nearby circumneutral systems (Rahel and Magnuson 1983), or they
can be among the most speciose freshwater habitats on the planet (Chao 2001).
Naturally acidic waters are most commonly formed through a combination of a
drainage basin with either weathering-resistant bedrock or little erosion potential,
resulting in very ion-poor water with minimal buffering capacity into which natural
organic matter (NOM) is released by biotic processes. Incomplete oxidation of both
plant and animal debris generates compounds with acidic functional groups such as
humic, fulvic, and tannic acids, among others. Release of these compounds into
poorly buffered water will lower the pH and, because this complex mixture of
compounds also absorbs light across the visible spectrum, will generally darken the
waters causing them to often be referred to as “black waters.” “Dystrophic” is a
limnological term also often applied to these waters. The fishes from these systems
tend to be poorly studied; the few studies come primarily from systems of Holocene
origin in North America, Eurasia, Southeast Asia, and New Zealand as well as the
much older Rio Negro Basin of South America. Among the temperate Holocene
systems, the abundance of hydrogen ion appears to be restricting species diversity
in the northern hemisphere (Amarasinghea and Welcomme 2002), but less so in
New Zealand (Collier et al. 1990). In Southeast Asia, the black water systems are
also of Holocene origin (Wst et al. 2007), but are characterized by only slightly
lower species diversity (Beamish et al. 2003). Considering the incredible species
diversity of the older Rio Negro system (over 1,000 fish species, approximately
three times the diversity of all of Europe) might lead one to assume that long-term
natural acidity promotes speciation, but taken in the context of the overall fish
species richness of the neotropics, this assumption would be premature. Certainly,
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and gymnotiforms, are well represented amongst the 1,000+ species of the Rio
Negro watershed (Goulding et al. 1988). Interestingly, a group not present in the
Neotropics and generally thought to be acid-intolerant from laboratory and north
temperate studies, the cyprinids, make up a significant portion of the fish assem-
blages in naturally acidic waters on the Malay peninsula (Beamish et al. 2003) and
are found in the most acid waters of Japan (Ikuta et al. 2000). Besides determining
whether an animal was present as a naturally acidic system formed, taxon does not
appear to be that important in determining final fish assemblage structure. Other
biotic factors such as coincident species or whether a given lineage evolved air
breathing could be just as important as a species’ ability to tolerate acid.






where inhibition of ion-transport proteins in gill ionocytes and disruption of the
integrity of intercellular junctions are frequently reported lesions (Reid 1995; Wood
2001; Kwong et al. 2014; Fig. 2). Investigations into acid precipitation and fish kills
generally found that fish were extirpated from waters at pH levels substantially
higher than were distressful to adult fish in the laboratory. There are many potential
explanations for this finding. Two of the most important turned out to be: 1) that
aluminum was commonly released into the waters of acidifying watersheds and had
a complex synergistic toxicity that varied with pH level and dissolved organic
molecules, and 2) that for most species, individuals were more vulnerable to
reduced environmental pH during reproductive life-history stages (Sayer
et al. 1993). Aluminum toxicity at low pH is a complex function of oxidation
state, pH, environmental [Ca™
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Relative to comparison species and congpecific populations, animals indigenous to
acidic habitats have been reported to (1) he more tolerant of low pH levels (Dunson
et al. 1977; Rahel 1983; Dederen et al. 1986; Wilson et al. 1999; Gonzalez
et al. 1998); (2) have less disruption of monovalent ion balance during acid
exposure (McWilliams 1982; Gonzalez and Dunson 1987, 1989a; Wilson
et al. 1999; Gonzalez et al. 1998, 2002); (3) exhibit greater blood oxygen transport
capacity (Rask and Virtanen 1986; Nelson et al. 1988; Wood et al. 1998); (4) have






sophisticated flux measurements on some of the most acid-tolerant Neotropical
species from black waters by obtaining them from aquarium dealers in North
America (e.g., Gonzalez and Preest 1999; Gonzalez and Wilson 2001). Some of
these fish exhibited branchial permeabilities on par with acid-intolerant species,
whereas others had very unremarkable Na™ uptake kinetics. Some of these species
did exhibit monovalent transport kinetics fairly independent of pH while others



A few studies using intraspecific comparisons of fish from naturally acidic
waters conflict with these results. Lyons (1982) and Vinogradov and Komov
(1985) showed no differences in monovalent ion loss between fish from naturally
acidic waters and conspecifics from neutral waters upon acid exposure. Further-
more, Nelson and Mitchell (1992) compared plasma ion levels of yellow perch
populations from a naturally acidic lake with conspecifics from neutral lakes after
16 h of swimming in acid water and found no difference between them. These latter
results support the conclusion from the interspecific comparative studies (reviewed
in Gonzalez et al. 2005) that adjustments to monovalent ion regulatory parameters



fish exposed to acid water are quite variable across studies (reviewed in Wood and
McDonald 1982). Many of the changes reported could not be separated from cell
swelling expected from plasma ion losses or adrenergic activation of erythrocytes
(Milligan and Wood 1982). If oxygen loading is being compromised in the gills of
fish from low pH waters, we would expect to see some compensation for this in fish
spending thousands to millions of generations in naturally acidic systems. Indeed,
Rask and Virtanen (1986) found that European perch from a naturally acidic lake
had a higher hematocrit than conspecifics from a circumneutral lake; even more
interesting was that the acidic lake perch increased their hematocrit in response to
reductions in pH, without changes in osmolality, whereas the neutral lake perch did
not (Rask and Virtanen 1986). Nelson et al. (1988) found blood sampled from



acidic lake (Nelson et al. 1988) could account for some of the increase in plasma
[HCOs;™



fairly extreme. For example, Waiwood and Beamish (1978) found no effect on
critical swimming speed (Uir) when the pH was reduced to 6.0 in rainbow trout,
but West and Garside (1986) found a significant depression of U; at pH 5.0-6.0.
Graham and Wood (1981) found a linear decrease in U, as pH was progressively
depressed below pH 6.0 in the same species. Fish from naturally acidic waters have
been shown to have their swimming performance less diminished by acid water, but
this result is context dependent: Nelson (1989) reanalyzed the data reported by
Holeton and Stevens (1978) to show that Triportheus angulatus (Characiformes)
acclimated to white water and swimming in black water had reduced critical



phosphate, and inosine mono-phosphate and suggested that fish that pushed
adenylate depletion and glycolysis to extremes had been selected against in this
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The overwhelming conclusion from this review is that fish from naturally acidic
systems merit far more study. Today, we cannot even generalize as to whether
acidic habitats promote or restrict piscine diversity nor do we understand what the
biological characteristics are that allow some species to thrive in acidic habitats.
Considering the fact that we find jawless lampreys and ancestral teleosts among the
fauna of naturally acidic systems and that the earth has experienced prior massive
acidification events (e.g., Permian-Triassic boundary, 250 MYA; Ogden and Sleep
2012) within the evolutionary history of today’s fishes, we would expect the ability
to occupy acidic habitats to be pleisiomorphic. This may explain why we find so
many diverse fish taxa in extant acidic ecosystems, but the question then becomes,
why have so many fishes lost the ability to thrive in acid waters? Minna Jewell
(1922) postulated almost a century ago that because of the physiological challenges
posed by high environmental [H*], species and populations occupying naturally
acidic waters were likely to be special in some way. Today, interest in animals from
acidic ocean seeps is surging as scientists seek to predict organismal and ecosystem
consequences of human-generated ocean acidification, yet we still know little about
how fishes deal with the more extreme acidity they encounter in naturally acidic
freshwaters. Understanding how fish acclimatize to, adapt, or even speciate in
acidic habitats will not only enrich our knowledge of freshwater fish evolution
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